
Revision 0.71

2025-07-25

SINGLE FREQUENCY LASER External Cavity Diode Laser

Product	Application
Product	Application
671 nm mini-ECL Laser	Quantum Technology
with hermetic 14-Pin Butterfly Housing (RoHS compliant)	
including Monitor Diode, Thermoelectric Cooler and Thermistor	
with integrated Beam Collimation	

Absolute Maximum Ratings Parameter Symbol Unit min typ max °C Storage Temperature T_S -40 85 Operational Temperature at Case °C -40 85 T_C $T_{\rm chip}$ Operational Temperature at Chip °C 35 Forward Current I_F mΑ 160 Reverse Voltage V 2 V_{R} Output Power P_{opt} mW 50 Α TEC Current 1 4 I_{TEC} TEC Voltage $V_{\text{TEC}} \\$ ٧ 4.8

Measurement Conditions / Comments

Stress in excess of one of the Absolute Maximum
Ratings may damage the laser. Please note that a
damaging optical power level may occur although
the maximum current is not reached. These are
stress ratings only, and functional operation at
these or any other conditions beyond those
indicated under Recommended Operational
Conditions is not implied.

Recommended Operational Conditions						
Parameter	Symbol	Unit	min	typ	max	
Operational Temperature at Case	T _{case}	°C	-20		65	
Operational Temperature at Chip	T_{chip}	°C	0		30	
Forward Current	I _F	mA			150	
Output Power	P _{opt}	mW	10		40	

Measurement Conditions / Comments
measured by integrated Thermistor

fon 49.30.6392.4520

Revision 0.71

2025-07-25

SINGLE FREQUENCY LASER External Cavity Diode Laser

Characteristics	= 15 °C at BOL					
Parameter	Symbol	Unit	min	typ	max	Measurement Conditions / Comments
Center Wavelength	λ_{C}	nm	670	671	672	
Target Wavelength	λ_{T}	nm		670.98		0 °C 30 °C at 40 mW
Linewidth	Δλ	MHz		0.3		FWHM; Popt = 40 mW
Mode-hop free Tuning Range	$\Delta \lambda_{ ext{tune}}$	pm		15		at target wavelength
Sidemode Suppression Ratio	SMSR	dB	30	40		Popt = 40 mW
Temp. Coefficient of Wavelength	dλ/dT	nm/K		0.008		
Current Coefficient of Wavelength	dλ / dI	nm/mA		0.001		
Laser Current	I_{LD}	mA			150	
Slope Efficiency	η	mW/mA		8.0		
Threshold Current	I _{th}	mA			90	Threshold current may drift, no violation of the max. Valu
Divergence parallel	$\Theta_{ }$	mrad		2		parallel to the base plate of the housing (see p. 3)
Divergence perpendicular	Θ_{\perp}	mrad		2		perpendicular to base plate of the housing (see p. 3)
Beam Diameter horizontal	d	mm		1.0		parallel to the base plate of the housing (see p. 3)
Beam Diameter vertical	d⊥	mm		0.8		perpendicular to base plate of the housing (see p. 3)
Degree of Polarization	DOP	%		90		Popt = 40 mW; E field perpendicular to the base plate
Monitor Diode						
Parameter	Symbol	Unit	min	typ	max	Measurement Conditions / Comments
Monitor Detector Responsivity	I _{mon} / P _o	μA/mW		5		5 V

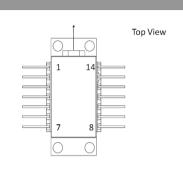
Thermoelectric Cooler						
Parameter	Symbol	Unit	min	typ	max	Measurement Conditions / Comments
Current	I _{TEC}	А		0.4		Popt = 40 mW, ΔT = 20 K
Voltage	U_TEC	V		1.3		Popt = 40 mW, ΔT = 20 K
Power Dissipation (total loss at case)	P _{loss}	W		0.5		Popt = 40 mW, ΔT = 20 K
Temperature Difference	ΔΤ	Κ			50	Popt = 40 mW, ΔT = Tcase - TLD

Thermistor (Standard NTC Type)							
Parameter	Symbol	Unit	min	typ	max		
Resistance	R	kΩ		10			
Beta Coefficient	b			3892			
Steinhart & Hart Coefficient A	А		1	1293 x 10	-3		
Steinhart & Hart Coefficient B	В		2	3410 x 10	-4		
Steinhart & Hart Coefficient C	С		8	.7755 x 10	-8		

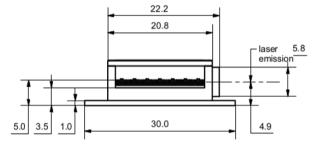
Measurement Conditions / Comments	
Tchip = 25 °C	
$R_1/R_2 = e^{\beta}(1/T_1 - 1/T_2)$ at Tchip = 0 °C 50 °C	

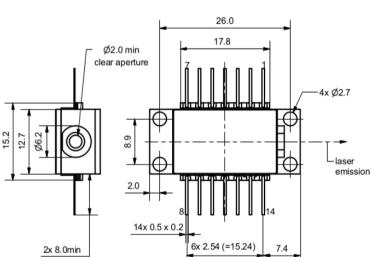
D-12489 Berlin

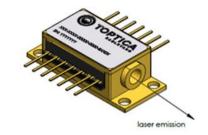
GERMANY


Revision 0.71

2025-07-25


SINGLE FREQUENCY LASER External Cavity Diode Laser



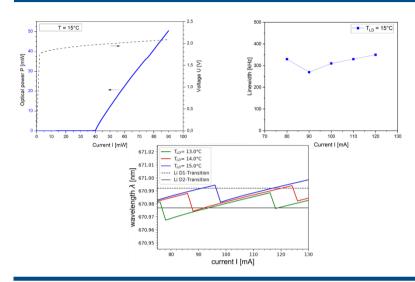

Pin Assignment							
1	Thermoelectric Cooler (+)	14	Thermoelectric Cooler (-)				
2	Thermistor	13	Case				
3	Photo Diode Anode	12	not connected				
4	Photo Diode Cathode	11	Laser Diode Cathode				
5	Thermistor	10	Laser Diode Anode				
6	not connected	9	not connected				
7	not connected	8	not connected				

Package Drawings

AIZ-20-1029-0928

D-12489 Berlin

GERMANY


Revision 0.71

2025-07-25

SINGLE FREQUENCY LASER External Cavity Diode Laser

Typical Measurement Results

Unpacking, Installation and Laser Safety

Unpacking the laser diodes should only be done at electrostatic safe workstations (EPA). Though protection against electro static discharge (ESD) is implemented in the laser package, charges may occur at surfaces. Please store this product in its original package at a dry, clean place until final use. During device installation, ESD protection has to be maintained.

Complies with 21 CFR 1040.10 and 1040.40

Avoid direct and/or indirect exposure to the free running beam. Collimating and focussing the free running beam with optics as common in optical instruments will increase threat to the human eye.

Each laser diode will come with an individual test protocol verifying the parameters given in this document.

Performance figures, data and any illustrative material provided in this specification are typical and must be specifically confirmed in writing by eagleyard Photonics before they become applicable to any particular order or contract. In accordance with the eagleyard Photonics policy of continuous improvement specifications may change without notice.

D-12489 Berlin

GERMANY

© eagleyard Photonics GmbH Rudower Chaussee 29 (IGZ) This data sheet is subject to change without notice.

fon 49.30.6392.4520