Revision 1.00

2022-12-20

SINGLE FREQUENCY LASER DIODES Distributed Feedback Laser

\sim	D 1 1	1 6 6
General	Product	Information

Product	Application
780 nm DFB Laser	Spectroscopy (Rb D2 line)
with hermetic 14-Pin Butterfly Housing (RoHS compliant)	Metrology
including Monitor Diode, Thermoelectric Cooler and Thermistor	THz Generation
with PM Fiber, integrated $\mu\text{-lsolator}$ and Angled Physical Contact (APC)	

Absolute Maximum Ratings

Parameter	Symbol	Unit	min	typ	max
Storage Temperature	T _S	°C	-40		85
Operational Temperature at Case	T_{C}	°C	-15		70
Operational Temperature at Laser Chip	T_{LD}	°C	5		50
Forward Current	I _F	mA			220
Reverse Voltage	V_R	V			2
Output Power	P_{opt}	mW			20
TEC Current	I _{TEC}	А			1.8
TEC Voltage	V_{TEC}	V			3.2

Measurement Conditions / Comments

Stress in excess of one of the Absolute Maximum Ratings may damage the laser. Please note that a damaging optical power level may occur although the maximum current is not reached. These are stress ratings only, and functional operation at these or any other conditions beyond those indicated under Recommended Operational Conditions is not implied.

Recommended Operational Conditions

Parameter	Symbol	Unit	min	typ	max
Operational Temperature at Case	T_{case}	°C	5		60
Operational Temperature at Laser Chip	T_LD	°C	5		45
Forward Current	I _F	mA			200
Output Power	P _{opt}	mW	5		20
	орг				

Measurement Conditions / Comments
measured by integrated Thermistor

Characteristics at T_{LD} = 25° C at BOL

780	781
780.24	
0.6	1
45	
	0.6

Measurement Conditions / Comments
see images on page 4
reached within $T_{LD} = 5 ^{\circ} \dots 45 ^{\circ} ^{\circ} ^{\circ}$ at 20 mW
$P_{opt} = 20 \text{ mW}$
> 10 GHz, at target wavelength
$P_{opt} = 20 \text{ mW}$

2022-12-20

SINGLE FREQUENCY LASER DIODES Distributed Feedback Laser

Symbol	Unit	min	typ	max
dλ / dT	nm / K		0.06	
dλ / dl	nm / mA		0.003	
I_{LD}	mA			200
η	W/A		0.2	
I _{th}	mA			70
PER	dB		20	
	$d\lambda / dT$ $d\lambda / dI$ I_{LD} η I_{th}	$\begin{array}{ccc} & d\lambda / dT & nm / K \\ & d\lambda / dI & nm / mA \\ & I_{LD} & mA \\ & \eta & W / A \\ & I_{th} & mA \end{array}$	$\begin{array}{ccc} & & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ &$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Measurement Conditions / Comments
exfiber
$P_{opt} = 20 \text{ mW}$

Monitor Diode					
Parameter	Symbol	Unit	min	typ	max
Monitor Detector Responsivity	I _{mon} / P _{opt}	μA/mW	5		100

Measi	urement Conditions / Comments
$U_R =$	5 V

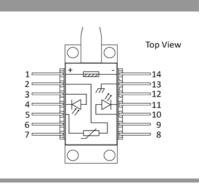
Thermoelectric Cooler					
Parameter	Symbol	Unit	min	typ	max
Current	I _{TEC}	А		0.4	
Voltage	U_TEC	V		1.5	
Power Dissipation (total loss at case)	P _{loss}	W		0.5	
Temperature Difference	ΔΤ	K			55

Measurement Conditions / Comments				
$P_{opt} = 20 \text{ mW}, \Delta T = 30 \text{ K}$				
$P_{opt} = 20 \text{ mW}, \Delta T = 30 \text{ K}$				
$P_{opt} = 20 \text{ mW}, \Delta T = 30 \text{ K}$				
$P_{opt} = 20 \text{ mW}, \Delta T = Tcase - TLD $				

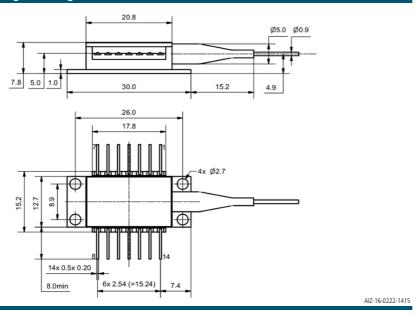
Thermistor (Standard NTC Type)					
Parameter	Symbol	Unit	min	typ	max
Resistance	R	kΩ		10	
Beta Coefficient	β			3892	
Steinhart & Hart Coefficient A	А			1.1293 x 10) -3
Steinhart & Hart Coefficient B	В		2.3410 x 10 ⁻⁴		
Steinhart & Hart Coefficient C	C			8.7755 x 10) -8

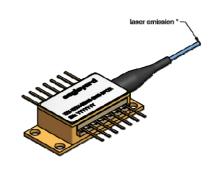
Measurement Conditions / Comments					
0° 50° C					

Revision 1.00



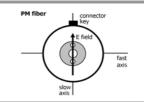
2022-12-20


SINGLE FREQUENCY LASER DIODES Distributed Feedback Laser



Pin	Pin Assignment							
1	Thermoelectric Cooler (+)	14	Thermoelectric Cooler (-)					
2	Thermistor	13	Case					
3	Photodiode (Anode)	12	not connected					
4	Photodiode (Cathode)	11	Laser Diode (Cathode)					
5	Thermistor	10	Laser Diode (Anode)					
6	not connected	9	not connected					
7	not connected	8	not connected					

Package Drawings

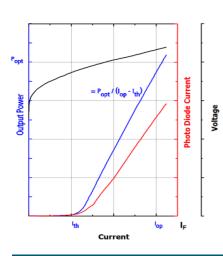

Caution. Excessive mechanical stress on the package can lead to a damage of the laser.

 $\underline{instruction \ manual} \ \ on \ www.eagleyard.com$

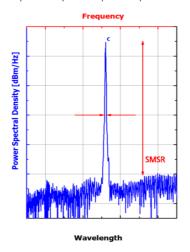
Fiber and Connector Type

PM Fiber	900 / 125 / $5.5~\mu m$, UV/Polyester-elastomer Coating (I = 1 +/-0.1 m)
Connector	FC/APC (narrow key / 2mm)
	other types on request

Revision 1.00


2022-12-20

SINGLE FREQUENCY LASER DIODES Distributed Feedback Laser



Typical Measurement Results

Output Power vs. Current

Spectra at Specified Optical Output Power

Performance figures, data and any illustrative material provided in this specification are typical and must be specifically confirmed in writing by eagleyard Photonics before they become applicable to any particular order or contract. In accordance with the eagleyard Photonics policy of continuous improvement specifications may change without notice.

Unpacking, Installation and Laser Safety

Unpacking the laser diodes should only be done at electrostatic safe workstations (EPA). Though protection against electro static discharge (ESD) is implemented in the laser package, charges may occur at surfaces. Please store this product in its original package at a dry, clean place until final use. During device installation, ESD protection has to be maintained.

The DFB laser is sensitive against optical feedback, so an optical isolator may be required in order to avoid any disturbance of the emission spectrum. Operating at moderate temperatures on proper heat sinks will contribute to a long lifetime of the diode.

Avoid direct and/or indirect exposure to the free running beam. Collimating and focussing the free running beam with optics as common in optical instruments will increase threat to the human eye.

Performance figures, data and any illustrative material provided in this specification are typical and must be specifically confirmed in writing by eagleyard Photonics before they become applicable to any particular order or contract. In accordance with the eagleyard Photonics policy of continuous improvement specifications may change without notice.

